129 research outputs found

    Learning Barrier Functions for Constrained Motion Planning with Dynamical Systems

    Full text link
    Stable dynamical systems are a flexible tool to plan robotic motions in real-time. In the robotic literature, dynamical system motions are typically planned without considering possible limitations in the robot's workspace. This work presents a novel approach to learn workspace constraints from human demonstrations and to generate motion trajectories for the robot that lie in the constrained workspace. Training data are incrementally clustered into different linear subspaces and used to fit a low dimensional representation of each subspace. By considering the learned constraint subspaces as zeroing barrier functions, we are able to design a control input that keeps the system trajectory within the learned bounds. This control input is effectively combined with the original system dynamics preserving eventual asymptotic properties of the unconstrained system. Simulations and experiments on a real robot show the effectiveness of the proposed approach

    Point-to-Pose Voting based Hand Pose Estimation using Residual Permutation Equivariant Layer

    Get PDF
    Recently, 3D input data based hand pose estimation methods have shown state-of-the-art performance, because 3D data capture more spatial information than the depth image. Whereas 3D voxel-based methods need a large amount of memory, PointNet based methods need tedious preprocessing steps such as K-nearest neighbour search for each point. In this paper, we present a novel deep learning hand pose estimation method for an unordered point cloud. Our method takes 1024 3D points as input and does not require additional information. We use Permutation Equivariant Layer (PEL) as the basic element, where a residual network version of PEL is proposed for the hand pose estimation task. Furthermore, we propose a voting based scheme to merge information from individual points to the final pose output. In addition to the pose estimation task, the voting-based scheme can also provide point cloud segmentation result without ground-truth for segmentation. We evaluate our method on both NYU dataset and the Hands2017Challenge dataset. Our method outperforms recent state-of-the-art methods, where our pose accuracy is currently the best for the Hands2017Challenge dataset

    Oscillation Damping Control of Pendulum-like Manipulation Platform using Moving Masses

    Get PDF
    This paper presents an approach to damp out the oscillatory motion of the pendulum-like hanging platform on which a robotic manipulator is mounted. To this end, moving masses were installed on top of the platform. In this paper, asymptotic stability of the platform (which implies oscillation damping) is achieved by designing reference acceleration of the moving masses properly. A main feature of this work is that we can achieve asymptotic stability of not only the platform, but also the moving masses, which may be challenging due to the under-actuation nature. The proposed scheme is validated by the simulation studies.Comment: IFAC Symposium on Robot Control (SYROCO) 201

    Merging Position and Orientation Motion Primitives

    Get PDF
    In this paper, we focus on generating complex robotic trajectories by merging sequential motion primitives. A robotic trajectory is a time series of positions and orientations ending at a desired target. Hence, we first discuss the generation of converging pose trajectories via dynamical systems, providing a rigorous stability analysis. Then, we present approaches to merge motion primitives which represent both the position and the orientation part of the motion. Developed approaches preserve the shape of each learned movement and allow for continuous transitions among succeeding motion primitives. Presented methodologies are theoretically described and experimentally evaluated, showing that it is possible to generate a smooth pose trajectory out of multiple motion primitives

    Long-Horizon Task Planning and Execution with Functional Object-Oriented Networks

    Full text link
    Following work on joint object-action representation, functional object-oriented networks (FOON) were introduced as a knowledge representation for robots. A FOON contains symbolic (high-level) concepts useful to a robot's understanding of tasks and its environment for object-level planning. Prior to this work, little has been done to show how plans acquired from FOON can be executed by a robot, as the concepts in a FOON are too abstract for immediate execution. We propose a hierarchical task planning approach that translates a FOON graph into a PDDL-based representation of domain knowledge for task planning and execution. As a result of this process, a task plan can be acquired, which can be executed by a robot from start to end, leveraging the use of action contexts and skills as dynamic movement primitives (DMPs). We demonstrate the entire pipeline from planning to execution using CoppeliaSim and show how learned action contexts can be extended to never-before-seen scenarios.Comment: Preliminary Draft, 8 pages, IEEE Conference Forma

    HOI4ABOT: Human-Object Interaction Anticipation for Human Intention Reading Collaborative roBOTs

    Full text link
    Robots are becoming increasingly integrated into our lives, assisting us in various tasks. To ensure effective collaboration between humans and robots, it is essential that they understand our intentions and anticipate our actions. In this paper, we propose a Human-Object Interaction (HOI) anticipation framework for collaborative robots. We propose an efficient and robust transformer-based model to detect and anticipate HOIs from videos. This enhanced anticipation empowers robots to proactively assist humans, resulting in more efficient and intuitive collaborations. Our model outperforms state-of-the-art results in HOI detection and anticipation in VidHOI dataset with an increase of 1.76% and 1.04% in mAP respectively while being 15.4 times faster. We showcase the effectiveness of our approach through experimental results in a real robot, demonstrating that the robot's ability to anticipate HOIs is key for better Human-Robot Interaction. More information can be found on our project webpage: https://evm7.github.io/HOI4ABOT_page/Comment: Proceedings in Conference on Robot Learning 202

    Generalization of Optimal Motion Trajectories for Bipedal Walking

    Get PDF
    Abstract— Control of robot locomotion profits from the use of pre-planned trajectories. This paper presents a way to generalize globally optimal and dynamically consistent trajectories for cyclic bipedal walking. A small task-space consisting of stride-length and step time is mapped to spline parameters which fully define the optimal joint space motion. The paper presents the impact of different machine learning algorithms for velocity and torque optimal trajectories with respect to optimality and feasibility. To demonstrate the usefulness of the trajectories, a control approach is presented that allows general walking including transitions between points in the task-space
    • …
    corecore